Week 5¶
- Define a figure and axes variables:
my_fig = plt.figure()
ax = plt.axes()
ax.plot(x,y)
ax.set_xlabel('horizontal label')
ax.set_ylabel('vertical label')
ax.set_title('my title')
ax.set_xlim(0, 100)
ax.axvline(2)
ax.axhline(6,color='r')
Defining a figure with plt.figure() allows you to work on multiple figures at one time, each assigned to a different variable, i.e.:
import matplotlib.pyplot as plt
fig1 = plt.figure()
fig2 = plt.figure()
fig3 = plt.figure()
<Figure size 640x480 with 0 Axes>
<Figure size 640x480 with 0 Axes>
<Figure size 640x480 with 0 Axes>
np.diff()¶
np.diff
calculates the differences between adjacent values in an array:
output = np.diff(np.array([1,1,2,3,5,8,13]))
output
array([0, 1, 1, 2, 3, 5])
(1-1 = 0, 2-1 = 1, 3-2 = 1, etc.)
Notice how many values are in each array above.
Plotting labels & legends:¶
When you call a plotting function, if you define a label for your line, bar, etc., and call the plt.legend() function, the legend will automatically populate with the labels for each line:
plt.plot(x,y, label = "my_line")
plt.legend()
This is particularly useful when plotting many lines. If you have a list of your line names, you can iterate through them with a for-loop:
line_names = ["line1", "line2" ,"line3"]
for i in lines:
plt.plot(lines[i], label = line_names[i])
While Loops:¶
Format:
while <condition is met>:
do function
i = 0
while i < 7:
i = i+1
print(i)
1 2 3 4 5 6 7