Week 6:¶
Subsetting arrays with conditionals:
In [ ]:
#Define an array
arr = np.array([[2,4,1,7],[9,4,7,6],[1,2,1,5],[4,8,8,1]])
print(arr, "\n")
#Make a selection based on a conditional (values greater than 5)
conditional_selection = arr > 5
print(conditional_selection, "\n")
#Subset the original array with the selection array
subset_arr = arr[conditional_selection]
print(subset_arr) # This returns an array of all the values from the original array that are greater than 5
[[2 4 1 7] [9 4 7 6] [1 2 1 5] [4 8 8 1]] [[False False False True] [ True False True True] [False False False False] [False True True False]] [7 9 7 6 8 8]
np.argmax(), np.argmin(), np.argsort()¶
In [ ]:
np.argmax(arr) # Returns the index of the max value in an array (reads a 2D array like 1D),
#i.e. the 4th index is the first value of the second row
4
In [ ]:
np.argmax(arr, axis = 1) # gives the index of the max value for each row
array([3, 0, 3, 1])
In [ ]:
np.argmax(arr, axis = 0) # gives the index of the max value for each column
array([1, 3, 3, 0])
np.argmin() behaves the same, but finds the index of the min
np.argsort() returns the indexes of the array if it were to be sorted:
In [ ]:
print(arr[0])
print(np.argsort(arr[0]))
[2 4 1 7] [2 0 1 3]
Read this as: the sorted order of the first row is the [2]
value, then the [0]
value, then the [1]
value, then the [3]
value.
A for-loop to demonstrate:
In [ ]:
for i in np.argsort(arr[0]):
print(arr[0,i])
1 2 4 7
Creating subplots:¶
- Defining figure and figuresize
fig=plt.figure(figsize=(10,3))
- Making subplots:
fig,ax=plt.subplots()
fig, (ax1,ax2)=plt.subplots(1,2)
fig.savefig('myfig.pdf')
ax.xticks
ax.yticks
ax.set_ylim
ax.set_xlim
ax.xticklabels
ax.yticklabels
ax.text
ax.spines
ax.set_aspect
- Useful reference:
Matplotlib Gallery examples
For instance, subplots example
In [ ]:
import numpy as np
import matplotlib.pyplot as plt
arr1 = np.array([[1,2,3,4,5],[5,7,2,5,5]])
arr2 = np.array([[1,2,3,4,5],[1,1,5,9,9]])
fig, ax = plt.subplots(1,3) # Defines a new figure and axes, gives dimensions for subplot grid: 1 row, 2 columns
ax[0].scatter(arr1[0],arr1[1])
ax[1].scatter(arr2[0],arr2[1])
ax[2].scatter(arr1[0],arr1[1])
ax[2].scatter(arr2[0],arr2[1])
ax[0].set_ylabel('y axis')
for axis in ax:
axis.set_xlim(-1,10)
axis.set_ylim(0,10)
axis.set_xlabel('x axis')
axis.spines['top'].set_visible(False)
axis.spines['right'].set_visible(False)
for i in range(1,3):
ax[i].spines['top'].set_visible(False)
ax[i].spines['right'].set_visible(False)
ax[i].spines['left'].set_visible(False)
ax[i].set_yticks([])
fig.tight_layout() # Generic statement for keeping labels and axes from overlapping